• want to estimate a population mean μ for a normal distribution $N(\mu,\sigma)$ when we don't know μ or σ

Example: distribution of weights in our box

• get a sample and measure

Example: sample of 5 values from our box of weights:

 $120 \quad 165 \quad 110 \quad 113 \quad 185$

• compute mean \bar{x} and standard deviation s for the sample

Example:
$$\bar{x} = \frac{120 + \dots + 185}{5} = 138.6$$

 $s = \sqrt{\frac{(120 - 138.6)^2 + \dots + (185 - 138.6)^2}{5 - 1}} = 34.2$

- have three distributions in play
 - the population distribution $N(\mu, \sigma)$
 - the data distribution with mean \bar{x} and standard deviation s
 - the sample means distribution $N(\mu_{\bar{x}}, \sigma_{\bar{x}}) = N(\mu, \sigma/\sqrt{n})$

Example: For our box of weights: $\mu = 154$, $\sigma = 33$, have

- use \bar{x} as estimate of μ
- how is the estimate affected by variability from sample to sample?
- \bullet to understand, imagine we do know μ and σ
- for each possible sample mean \bar{x} , can compute $z = \frac{\bar{x} \mu}{\sigma / \sqrt{n}}$
- know that z-scores have N(0, 1) distribution
- can check this with a sampling simulation

Example: $\mu = 154$ and $\sigma = 33$

- have software take sample of size 5 from N(154, 33)
- compute \bar{x} and z
- repeat to get z for many samples of size 5
- make histogram of these z values
- result looks normal; confirm by superimposing plot of N(0, 1)

- what is the impact of using s in place of σ ?
- in place of z values, we compute $t = \frac{\bar{x} \mu}{s/\sqrt{n}}$
- to understand distribution of t values, can do a sampling simulation
 - pick values $\mu = 154$ and $\sigma = 33$
 - have software take sample of size 5 from N(154, 33)
 - compute \bar{x} , s, and t
 - repeat to get t for many samples of size 5
 - make histogram of these t values
 - result does not look normal
 - confirm by superimposing plot of N(0, 1)

• N(0,1) is not a good fit for the distribution of t values in this simulation

- \bullet need a new type of distribution: t-distributions
- \bullet not one, but many labeled by degrees of freedom df
- for t values from samples of size n, use t-distribution of degrees of freedom df = n 1
- for our simulation, n = 5, so superimpose t-distribution with df = 5 1 = 4 to compare

Plot of t(1) (blue curve), t(4) (red curve), t(10) green curve, N(0, 1) (black curve)